Part Number Hot Search : 
MBR30150 SA606D SMA81 CS5821 URF1660 KTD1028 2SJ387 MAX3349E
Product Description
Full Text Search
 

To Download 5962-9458101MCA Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  rev. e information furnished by analog devices is believed to be accurate and reliable. however, no responsibility is assumed by analog devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. no license is granted by implication or otherwise under any patent or patent rights of analog devices. a op282/op482 one technology way, p.o. box 9106, norwood, ma 02062-9106, u.s.a. tel: 781/329-4700 www.analog.com fax: 781/326-8703 ? analog devices, inc., 2002 features high slew rate: 9 v/ s wide bandwidth: 4 mhz low supply current: 250 a/amplifier low offset voltage: 3 mv low bias current: 100 pa fast settling time common-mode range includes v+ unity gain stable a pplications active filters fast amplifiers integrators supply current monitoring dual/quad low power, high speed jfet operational amplifiers general description the op282/op482 dual and quad operational amplifiers feature excellent speed at exceptionally low supply currents. slew rate exceeds 7 v/ m s with supply current under 250 m a per amplifier. these unity gain stable amplifiers have a typical gain bandwidth of 4 mhz. the jfet input stage of the op282/op482 ensures bias current is typically a few picoamps and below 500 pa over the full tem- perature range. offset voltage is under 3 mv for the dual and under 4 mv for the quad. with a wide output swing, within 1.5 v of each supply, low power consumption, and high slew rate, the op282/op482 are ideal for battery powered systems or power restricted applica- tions. an input common-mode range that includes the positive supply makes the op282/op482 an excellent choice for high- side signal conditioning. the op282/op482 are specified over the extended industrial temperature range. both dual and quad amplifiers are available in plastic dip plus soic surface mount packages. pin connections 8-lead narrow-body soic 8-lead epoxy dip (s suffix) (p suffix) v out b in b in b 1 2 3 4 5 6 7 8 out a in a in a v op282 1 2 3 4 5 6 7 8 out a in a in a v op-482 v out b in b in b op282 + ? ? + 14-lead epoxy dip 14-lead narrow-body soic (p suffix) (s suffix) 1 2 3 4 5 6 7 14 13 12 11 10 9 8 out a in a in a v+ in b in b out b out b ?in d in d v in c in c out c op482 1 2 3 4 5 6 7 14 13 12 11 10 9 8 out a in a in a v in b in b out b out d in d in d v? in c in c out c op482 ? + + ? ? + + ?
rev. e ? op282/op482?pecifications (t a = 25 c, v s = 3 v, f rf = 900 mhz, ground reference output mode, unless otherwise noted.) electrical characteristics (@ v s = 15.0 v, t a = 25 c unless otherwise noted.) parameter symbol conditions min typ max unit input characteristics offset voltage v os op282 0.2 3 mv op282, ?0 t a +85 c 4.5 mv v os op482 0.2 4 mv op482, ?0 t a +85 c6mv input bias current i b v cm = 0 v 3 100 pa v cm = 0 v, note 1 500 pa input offset current i os v cm = 0 v 1 50 pa v cm = 0 v, note 1 250 pa input voltage range ?1 +15 v common-mode rejection cmr ?1 v v cm +15 v, ?0 c t a +85 c70 90 db large signal voltage gain a vo r l = 10 k w 20 v/mv r l = 10 k w , ?0 c t a +85 c1 5 v/mv offset voltage drift d v os / d t10 m v/ c bias current drift d i b / d t8 pa/ c output characteristics output voltage swing v o r l = 10 k w ?3.5 13.9 13.5 v short circuit limit i sc source 3 10 ma sink ? ?2 ma open-loop output impedance z out f = 1 mhz 200 w power supply power supply rejection ratio psrr v s = 4.5 v to 18 v, ?0 c t a +85 c25 316 m v/v supply current/amplifier i sy v o = 0 v, 40 c t a 85 c 210 250 m a supply voltage range v s 4.5 18 v dynamic performance slew rate sr r l = 10 k w 79 v/ m s full-power bandwidth bw p 1% distortion 125 khz settling time t s to 0.01% 1.6 m s gain bandwidth product gbp 4 mhz phase margin o 55 degrees noise performance voltage noise e n p-p 0.1 hz to 10 hz 1.3 m v p-p voltage noise density e n f = 1 khz 36 nv/ hz current noise density i n 0.01 pa/ hz note 1 the input bias and offset currents are tested at t a = t j = 85 c. bias and offset currents are guaranteed but not tested at ?0 c. specifications subject to change without notice.
rev. e op282/op482 ? absolute maximum ratings supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 v input voltage 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 v differential input voltage 1 . . . . . . . . . . . . . . . . . . . . . . . 36 v output short-circuit duration . . . . . . . . . . . . . . . . indefinite storage temperature range p, s packages . . . . . . . . . . . . . . . . . . . . . . ?5 c to +150 c operating temperature range op282g, op482g . . . . . . . . . . . . . . . . . . . ?0 c to +85 c junction temperature range p, s packages . . . . . . . . . . . . . . . . . . . . . . ?5 c to +125 c lead temperature range (soldering 60 sec) . . . . . . . . . 300 c package type ja 2 jc units 8-pin plastic dip (p) 103 43 c/w 8-pin soic (s) 158 43 c/w 14-pin plastic dip (p) 83 39 c/w 14-pin soic (s) 120 36 c/w notes 1 for supply voltages less than 18 v, the absolute maximum input voltage is equal to the supply voltage. 2 q ja is specified for the worst case conditions; i.e., q ja is specified for device in socket for cerdip, pdip; q ja is specified for device soldered in circuit board for soic package. caution esd (electrostatic discharge) sensitive device. electrostatic charges as high as 4000 v readily accumulate on the human body and test equipment and can discharge without detection. although the op282/op482 features proprietary esd protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. therefore, proper esd precautions are recommended to avoid performance degradation or loss of functionality. ordering guide temperature package package model range description option op282gp * ?0 c to +85 c 8-pin plastic dip n-8 op282gs ?0 c to +85 c 8-pin soic rn-8 op482gp ?0 c to +85 c 14-pin plastic dip n-14 op482gs ?0 c to +85 c 14-pin soic rn-14 * not for new designs, obsolete april 2002. for military processed devices, please refer to the standard microcircuit drawing (smd) available at www.dscc.dla.mil/programs/milspec/default.asp smd part number adi equivalent 5962?458101m2a * op482arc/883 5962?458101mca * op482ay/883 * not for new designs, obsolete april 2002. warning! esd sensitive device
rev. e ? op282/op482?ypical performance characteristics frequency ? hz 1k 10k 100k 1m 100m 10m 80 open-loop gain ? db phase ? degrees 90 135 0 45 180 60 40 20 0 t a = 25 c v s = 15v tpc 1. open-loop gain, phase vs. frequency frequency ? hz 1k 10k 100k 1m 100m 10m 60 open-loop gain ? db 40 20 10 0 50 30 ?10 ?20 t a = 25 c v s = 15v a vcl = 10 tpc 4. closed-loop gain vs. frequency 60 55 phase margin ? degrees ?75 temperature ? c ?50 ?25 0 25 50 75 100 125 v s = 15v r l = 10k gbw gain bandwidth product ? mhz 50 45 40 5.0 4.5 4.0 3.5 3.0 tpc 7. op482 phase margin and gain bandwidth product vs. temperature 125 100 50 75 25 0 75 50 25 temperature ? c open-loop gain ? v/mv 30 v s = 15v r l = 10k 35 25 20 15 10 5 tpc 2. open-loop gain (v/mv) ?sr ?75 temperature ? c ?50 ?25 0 25 50 75 100 125 5 10 25 15 20 sr v s = 15v r l = 10k c l = 50pf slew rate ? v/ s tpc 5. op282/op482 slew rate vs. temperature frequency ? hz 10 100 1k 10k 80 0 20 10 40 30 50 60 70 vo lta ge noise density ? nv/ hz v s = 15v t a = 25 c tpc 8. voltage noise density vs. frequency o vershoot ? % 500 0 300 100 200 400 70 10 0 60 50 40 30 20 load capacitance ? pf a vcl = 1 negative edge v s = 15v r l = 2k v in = 100mv p-p a vcl = 1 positive edge tpc 3. small signal overshoot vs. load capacitance 1000 1.0 0.1 100 10 input bias current ? pa temperature ? c 125 ?25 ?50 25 0507 5 100 v cm = 0 v s = 15v tpc 6. op282 input bias current vs. temperature common-mode voltage ? v 15 ?15 0 5 10 ?10 ?5 v s = 15v t a = 25 c input bias current ? pa 100 1 1000 0.1 10 tcp 9. op282 input bias current vs. common-mode voltage
rev. e op282/op482 ? supply voltage ? v 15 0 20 10 5 relative supply current ? isy 1.10 0.90 1.15 0.85 1.00 1.05 0.95 t a = 25 c tpc 10. relative supply current vs. supply voltage relative supply current ? isy temperature ? c 1.20 0.80 0.90 0.85 1.00 0.95 1.05 1.10 1.15 50 75 125 100 75 50 25 0 25 v sup = 15 tpc 13. relative supply current vs. temperature short circuit current ? ma 20 15 5 10 sink source temperature ? c 75 75 0 25 50 50 25 100 125 v s = 15v tpc 16. op282/op482 short circuit current vs. temperature impedance ? 600 0 300 100 200 500 400 t a = 25 c v s = 15v 1m 1k 100 100k 10k frequency ? hz a vcl = 100 a vcl = 10 a vcl = 1 tpc 12. op482 closed-loop output impedance vs. frequency psrr ? db 100 20 40 0 20 80 60 1m 1k 100 100k 10k frequency ? hz psrr psrr v s = 15v v = 100mv t a = 25 c tpc 15. op282 power supply rejection ratio (psrr) vs. frequency cmrr ? db 100 20 40 0 20 80 60 v s = 15v v cm = 100mv t a = 25 c 1m 1k 100 100k 10k frequency ? hz tpc 18. op282 common-mode rejection ratio (cmrr) vs. frequency supply voltage ? v 15 0 10 5 20 ?5 output voltage swing ? v 0 15 5 10 20 ?10 ?20 ?15 r l = 10k t a = 25 c tpc 11. output voltage swing vs. supply voltage load resistance ? 10k 1k 100 absolute output voltage ? v 16 0 2 8 6 10 12 14 4 t a = 25 c v s = 15v positive swing negative swing tpc 14. maximum output voltage vs. load resistance maximum output swing ? v 30 0 15 5 10 25 20 v s = 15v t a = 25 c r l = 10k a vcl = 1 100k 10k 1k 1m frequency ? hz tpc 17. maximum output swing vs. frequency
rev. e op282/op482 ? 0 280 120 40 80 240 160 200 units v s = 15v t a = 25 c (630 op amps ) 315 op282 2000 1600 2000 1600 1200 800 400 0 400 800 1200 v os v tpc 19. v os distribution ??package units 320 0 80 40 160 120 200 240 280 32 4 028 24 20 16 12 8 tcv os v/ c tpc 20. op282 tcv os ( m v/ c) distribution ??package units 0 600 700 300 100 200 400 500 32 4 0 28 24 20 16 12 8 tcv os ? v/ c 1200 op amps v s = 15v ?40 c t a 85 c 300 op482 tpc 21. tcv os distribution??package units 0 600 700 300 100 200 400 500 2000 1600 2000 1600 1200 800 400 0 400 800 1200 v os v t a = 25 c v s = 15v 300 op 482 1200 op amps tpc 22. op482 v os distribution ??package
rev. e op282/op482 ? applications information the op282 and op482 are single and dual jfet op amps that have been optimized for high speed at low power. this combination makes these amplifiers excellent choices for battery pow ered or low power applications requiring above average performance. applications benefiting from this perfor- mance combination include telecom, geophysical exploration, portable medical equipment, and navigational instrumentation. high-side signal conditioning there are many applications that require the sensing of signals near the positive rail. op282s and op482s have been tested and guaranteed over a common-mode range (?1 v v cm + 15 v) that includes the positive supply. one application where this is commonly used is in the sensing of power supply currents. this enables it to be used in current sensing applications such as the partial circuit shown in figure 1. in this circuit, the voltage drop across a low value resistor, such as the 0.1 w shown here, is amplified and compared to 7.5 v. the output can then be used for current limiting. 15v 100k 500k 0.1 100k 100k r l 1/2 op282 figure 1. phase inversion phase inversion most jfet-input amplifiers will invert the phase of the input signal if either input exceeds the input common-mode range. for the op282 and op482, negative signals in excess of approximately 14 v will cause phase inversion. the cause of this effect is satura- tion of the input stage leading to the forward-biasing of a drain- gate diode. a simple fix for this in noninverting applications is to place a resistor in series with the noninverting input. this limits the amount of current through the forward-biased diode and prevents the shutting down of the output stage. for the op282/ op482, a value of 200 k w has been found to work. however, this adds a significant amount of noise. 15 10 5051015 15 10 5 0 5 10 15 v out v in figure 2. op282 phase reversal active filters the wide bandwidth and high slew rates of the op282 and op482 make either an excellent choice for many filter applications. there are many types of active filter configurations, but the four most popular configurations are butterworth, elliptical, bessel, and chebyshev. each type has a response that is optimized for a given characteristic as shown in table i. table i. amplitude amplitude type selectivity overshoot phase (pass band) (stop band) butterworth moderate good max flat chebyshev good moderate nonlinear equal ripple elliptical best poor equal ripple equal ripple bessel (thompson) poor best linear
rev. e op282/op482 ? programmable state-variable filter the circuit shown in figure 3 can be used to accurately program the ?,?the cutoff frequency f c , and the gain of a two pole state- variable filter. op482s have been used in this design because of their high bandwidths, low power, and low noise. this circuit takes only three packages to build because of the quad configuration of the op amps and dacs. the dacs shown are used in the voltage mode so too many values are dependent only on the accuracy of the dac and not on the absolute values of the dac? resistive ladders. this makes this circuit unusually accurate for a programmable filter. adjusting dac 1 changes the signal amplitude across r1; there- fore, the dac attenuation times r1 determines the amount of signal current that charges the integrating capacitor, c1. this cutoff frequency can now be expressed as: fc = 1 2 p r 1 c 1 d 1 256 ? ? ? where d 1 is the digital code for the dac. gain of this circuit is set by adjusting d 3 . the gain equation is: gain = r 4 r 5 d 3 256 ? ? ? dac 2 is used to set the ??of the circuit. adjusting this dac controls the amount of feedback from the band-pass node to the input summing node. note that the digital value of the dac is in the numerator; therefore, zero code is not a valid operating point. q = r 2 r 3 256 d 2 ? ? ? r5 2k 1/4 op482 v in 1/4 dac 8408 high pass c1 1000pf r4 2k r6 2k r7 2k 1/4 op482 r1 2k 1/4 op482 1/4 dac 8408 1/4 op482 r1 2k 1/4 op482 1/4 dac 8408 1/4 op482 c1 1000pf low pass 1/4 op482 1/4 op482 1/4 dac 8408 band pass r2 2k r3 2k figure 3.
rev. e op282/op482 ? op282/op482 spice macro model figure 4 shows the op282 spice macro model. the model for the op482 is similar to that of the op282, but there are some minor changes in the circuit values. contact adi for a copy of the latest spice model diskette for both listings. g1 in? in+ 2 1 ios cin r2 r1 3 j1 j2 4 i1 99 eos 56 c2 r3 r4 50 7 r5 c3 9 98 eref d1 v2 d2 v3 10 8 g2 g3 g11 c4 11 12 r6 e2 98 r7 13 r8 c5 r9 14 c6 r? 19 c13 e13 20 21 r21 r22 c14 g15 r23 c15 98 23 r25 r26 24 isy 99 50 d3 25 d4 26 v4 v5 g19 d5 d6 g20 r28 r27 d8 d7 g17 g18 27 28 29 l5 vout 30 figure 4.
rev. e op282/op482 ?0 op282 spice macro model * node assignments * noninverting input * inverting input * positive supply * negative supply * output * .subckt op282 1 2 99 50 30 * * input stage & pole at 15 mhz * r1 1 3 5e11 r2 2 3 5e11 r3 5 50 3871.3 r4 6 50 3871.3 cin 1 2 5e-12 c2 5 6 1.37e-12 i1 99 4 0.1e-3 ios 1 2 5e-13 eos 7 1 poly(1) 21 24 200e-6 1 j1 524 jx j2 674 jx * eref 98 0 24 0 1 * * gain stage & pole at 124 hz * r5 9 98 1.16e8 c3 9 98 1.11e-11 g1 98 9 5 6 2.58e-4 v2 99 8 1.2 v3 10 50 1.2 d1 98dx d2 10 9 dx * * negative zero at 4 mhz * r6 11 12 1e6 r7 12 98 1 c4 11 12 39.8e-15 e2 11 98 9 24 1e6 * * pole at 15 mhz * r8 13 98 1e6 c5 13 98 10.6e-15 g2 98 13 12 24 1e-6 * * pole at 15 mhz * r9 14 98 1e6 c6 14 98 10.6e-15 g3 98 14 13 24 1e-6 * * pole at 15 mhz * r19 19 98 1e6 c13 19 98 10.6e-15 g11 98 19 14 24 1e-6 * * common-mode gain network with zero at 11 khz * r21 20 21 1e6 r22 21 98 1 c14 20 21 14.38e-12 e13 98 20 3 24 31.62 * * pole at 15 mhz * r23 23 98 1e6 c15 23 98 10.6e-15 g15 98 23 19 24 1e-6 * * output stage * r25 24 99 5e6 r26 24 50 5e6 isy 99 50 107e-6 r27 29 99 700 r28 29 50 700 l5 29 30 1e-8 g17 27 50 23 29 1.43e-3 g18 28 50 29 23 1.43e-3 g19 29 99 99 23 1.43e-3 g20 50 29 23 50 1.43e-3 v4 25 29 2.8 v5 29 26 3.5 d3 23 25 dx d4 26 23 dx d5 99 27 dx d6 99 28 dx d7 50 27 dy d8 50 28 dy * * models used * .model jx pjf(beta = 3.34e-4 vto = ?.000 is = 3e-12) .model dx d(is = 1e-15) .model dy d(is = 1e-15 bv = 50) .ends op282
rev. e op282/op482 ?1 outline dimensions 8-lead standard small outline package [soic] narrow-body (rn-8) dimensions shown in millimeters and (inches) 0.25 (0.0098) 0.19 (0.0075) 1.27 (0.0500) 0.41 (0.0160) 0.50 (0.0196) 0.25 (0.0099) 45 8 0 1.75 (0.0688) 1.35 (0.0532) seating plane 0.25 (0.0098) 0.10 (0.0040) 85 4 1 5.00 (0.1968) 4.80 (0.1890) 4.00 (0.1574) 3.80 (0.1497) 1.27 (0.0500) bsc 6.20 (0.2440) 5.80 (0.2284) 0.51 (0.0201) 0.33 (0.0130) coplanarity 0.10 controlling dimensions are in millimeters; inch dimensions (in parentheses) are rounded-off millimeter equivalents for reference only and are not appropriate for use in design compliant to jedec standards ms-012aa 14-lead standard small outline package [soic] narrow-body (rn-14) dimensions shown in millimeters and (inches) controlling dimensions are in millimeters; inch dimensions (in parentheses) are rounded-off millimeter equivalents for reference only and are not appropriate for use in design coplanarity 0.10 14 8 7 1 6.20 (0.2441) 5.80 (0.2283) 4.00 (0.1575) 3.80 (0.1496) 8.75 (0.3445) 8.55 (0.3366) 1.27 (0.0500) bsc seating plane 0.25 (0.0098) 0.10 (0.0039) 0.51 (0.0201) 0.33 (0.0130) 1.75 (0.0689) 1.35 (0.0531) 8 0 0.50 (0.0197) 0.25 (0.0098) 45 1.27 (0.0500) 0.40 (0.0157) 0.25 (0.0098) 0.19 (0.0075) 8-lead plastic dual-in-line packag [pdip] (n-8) dimensions shown in inches and (millimeters) seating plane 0.015 (0.38) min 0.180 (4.57) max 0.150 (3.81) 0.130 (3.30) 0.110 (2.79) 0.060 (1.52) 0.050 (1.27) 0.045 (1.14) 8 1 4 5 0.295 (7.49) 0.285 (7.24) 0.275 (6.98) 0.100 (2.54) bsc 0.375 (9.53) 0.365 (9.27) 0.355 (9.02) 0.150 (3.81) 0.135 (3.43) 0.120 (3.05) 0.015 (0.38) 0.010 (0.25) 0.008 (0.20) 0.325 (8.26) 0.310 (7.87) 0.300 (7.62) 0.022 (0.56) 0.018 (0.46) 0.014 (0.36) controlling dimensions are in inches; millimeters dimensions (in parentheses) compliant to jedec standards mo-095aa 14-lead plastic dual-in-line package [pdip] (n-14) dimensions shown in inches and (millimeters) 14 1 7 8 0.685 (17.40) 0.665 (16.89) 0.645 (16.38) 0.295 (7.49) 0.285 (7.24) 0.275 (6.99) 0.100 (2.54) bsc seating plane 0.180 (4.57) max 0.022 (0.56) 0.018 (0.46) 0.014 (0.36) 0.150 (3.81) 0.130 (3.30) 0.110 (2.79) 0.060 (1.52) 0.050 (1.27) 0.045 (1.14) 0.150 (3.81) 0.135 (3.43) 0.120 (3.05) 0.015 (0.38) 0.010 (0.25) 0.008 (0.20) 0.325 (8.26) 0.310 (7.87) 0.300 (7.62) 0.015 (0.38) min controlling dimensions are in inch; millimeters dimensions (in parentheses) are rounded-off millimeter equivalents for reference only and are not appropriate for use in design compliant to jedec standards mo-095-ab
rev. e ?2 c00301??0/02(e) printed in u.s.a. op282/op482 revision history location page 10/02?ata sheet changed from rev. d to rev. e. edits to 8-lead epoxy dip (p-suffix) pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 edits to ordering guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 edits to outline dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 9/02?ata sheet changed from rev. c to rev. d. edits to 14-lead soic (s-suffix) pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 replaced 8-lead soic (s-suffix) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4/02?ata sheet changed from rev. b to rev. c. wafer test limits deleted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 edits to absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 dice characteristics deleted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 edits to ordering guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 edits to figure 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 edits to figure 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 20-position chip carrier (rc suffix) deleted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11


▲Up To Search▲   

 
Price & Availability of 5962-9458101MCA

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X